
SPINOL-Derived Phosphoric Acids: Synthesis and Application in Enantioselective Friedel-Crafts Reaction of Indoles with Imines

Fangxi Xu,[†] Dan Huang,[†] Chao Han,[†] Wei Shen,[†] Xufeng Lin,^{*,†} and Yanguang Wang^{*,†,‡}

[†]Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China, and [‡]State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

lxfok@zju.edu.cn; orgwyg@zju.edu.cn

Received August 19, 2010

A new class of chiral phosphoric acids with spirobiindane as scaffold were conveniently synthesized from (S)-1,1'spirobiindane-7,7'-diol ((S)-SPINOL) and employed to catalyze the asymmetric Friedel–Crafts reaction of indoles with imines to afford 3-indolyl methanamines. High yields (68–97%) and excellent enantioselectivities (up to 99% ee) were obtained.

The catalytic asymmetric Friedel–Crafts (F–C) reaction is a powerful strategy for the construction of carbon–carbon bond in organic synthesis, providing direct approach to the enantiomerically enriched arene derivatives.¹ Since indoles exhibited significant nucleophilic reactivity and extensively biological activities,² their asymmetric Friedel–Crafts reactions are of great value.³ Among the published asymmetric Friedel–Crafts

(3) For reviews, see: (a) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608. (b) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550. (c) Z., M.; You, S. L. Synlett 2010, 1289.

DOI: 10.1021/jo101640z © 2010 American Chemical Society Published on Web 11/17/2010

reactions,^{4,5} the chiral phosphoric acids⁶ were demonstrated to be efficient.⁷ These phosphoric acid catalysts possess a biaryl backbone. Typical examples are BINOL and H₈-BINOLderived phosphoric acids **1** (Figure 1). With regard to the significant works on the synthesis of enantiopure 1,1'-spirobiindane-7, 7'-diol⁸ (SPINOL, **3**) and catalytic applications of its derivatives,⁹ we synthesized SPINOL-derived phosphoric acids **2** and investigated their application in enantioselective Friedel–Crafts reaction of indoles with imines, which furnished 3-indolyl methanamines. We herein report the results of this effort.

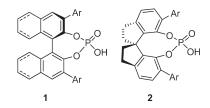


FIGURE 1. Chiral phosphoric acids.

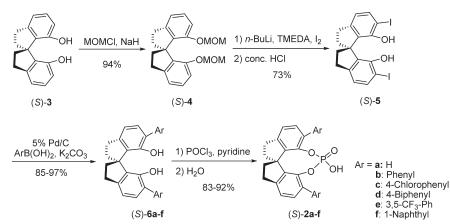
As shown in Scheme 1, the SPINOL-derived phosphoric acids **2** were synthesized from (*S*)-SPINOL **3**. Initially, (*S*)-SPINOL was routinely protected with the MOM group to afford **4** in 94% yield. Compound **4** underwent lithiation and

(6) Chiral phosphoric acids were first introduced as organocatalyst by Terada and Akiyama; see: (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356. (c) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804.

(7) For selected examples of asymmetric Friedel-Crafts reactions using chiral phosphoric acids as catalyst, see: (a) Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 292. (b) Kang, Q.; Zhao, Z.-A.; You, S.-L. J. Am. Chem. Soc. 2007, 129, 1484. (c) Rowland, G. B.; Rowland, E. B.; Liang, Y.; Perman, J. A.; Antilla, J. C. Org. Lett. 2007, 9, 2609. (d) Terada, M.; Yokoyama, S.; Sorimachi, K.; Uraguchi, D. Adv. Synth. Catal. 2007, 349, 1863. (e) Jia, Y. X.; Zhong, J.; Zhu, S. F.; Zhang, C. M.; Zhou, Q. L. Angew. Chem., Int. Ed. 2007, 46, 5565. (f) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. You, S. L. Eur. J. Org. Chem. 2010, 47.

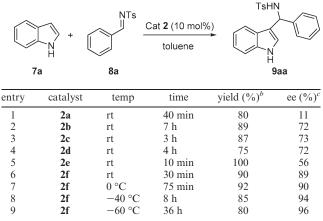
Chem, Int. Ed. 2006, 47, 4010. (g) Sun, F. L., Zheng, A. J., Gu, G., He, Q. L.,
You, S. L. Eur. J. Org. Chem. 2010, 47.
(8) (a) Birman, V. B.; Rheingold, A. L.; Lam, K.-C. Tetrahedron:
Asymmetry 1999, 10, 125. (b) Zhang, J.-H.; Liao, J.; Cui, X.; Yu, K.-B.;
Deng, J.-G.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L.; Chung, L.-W.; Ye, T.
Tetrahedron: Asymmtry 2002, 13, 1363.

(9) For selected examples, see: (a) Hu, A. G.; Fu, Y.; Xie, J. H.; Zhou, H.; Wang, L. X.; Zhou, Q. L. Angew. Chem., Int. Ed. 2002, 41, 2348. (b) Xie, J. H.; Wang, L. X.; Fu, Y.; Zhu, S. F.; Fan, B. M.; Duan, H. F.; Zhou, Q. L. J. Am. Chem. Soc. 2003, 125, 4404. (c) Zhu, S. F.; Xie, J. B.; Zhang, Y. Z.; Li, S.; Zhou, Q. L. J. Am. Chem. Soc. 2006, 128, 12886. (d) Yang, Y.; Zhu, S. F.; Duan, H. F.; Zhou, C. Y.; Wang, L. X.; Zhou, Q. L. J. Am. Chem. Soc. 2007, 129, 2248. (e) Xie, J. H.; Zhou, Q. L. Acc. Chem. Res. 2008, 41, 581. (f) Xie, J. B.; Xie, J. H.; Liu, X. Y.; Kong, W. L.; Li, S.; Zhou, Q. L. J. Am. Chem. Soc. 2010, 132, 4538. (g) Zhu, S. F.; Cai, Y.; Mao, H. X.; Xie, J. H.; Zhou, Q. L. Nat. Chem. 2010, 2, 546.


For reviews on asymmetric Friedel-Crafts reaction, see: (a) Bandini,
 M.; Melloni, A.; Tommasi, S.; Umani-Ronchi, A. Synlett **2005**, 1199. (b)
 Sheng, Y.-F.; Zhang, A. J.; Zheng, X.-J.; You, S.-L. Chin, J. Org. Chem.
 2008, 28, 605. (c) Poulsen, T.; Jørgensen, K. A. Chem. Rev. **2008**, 108, 2903.
 (d) You, S.-L.; Cai, Q; Zeng, M. Chem. Soc. Rev. **2009**, 38, 2190.

 ^{(2) (}a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873. (b) Joule, J. A.;
 Mills, K. Heterocyclic Chemistry, 4th ed.; Blackwell Science: Oxford, 2000.
 (c) Faulkner, D. J. Nat. Prod. Rep. 2002, 19, 1. (d) Somei, M.; Yamada, F. Nat. Prod. Rep. 2004, 21, 278. (e) Agarwal, S.; Caemmerer, S.; Filali, S.;
 Froehner, W.; Knoell, J.; Krahl, M. P.; Reddy, K. R.; Knölker, H.-J. Curr. Org. Chem. 2005, 9, 1601. (f) O'Connor, S. E.; Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532. (g) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875.

⁽⁴⁾ For selected examples of chiral metal-complex catalysis, see: (a) Johannsen, M. Chem. Commun. 1999, 2233. (b) Gathergood, N.; Zhuang, W.; Jørgensen, K. A. J. Am. Chem. Soc. 2000, 122, 12517. (c) Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030. (d) Evans, D. A.; Scheidt, K. A.; Fandrick, K. R.; Lam, H. W.; Wu, J. J. Am. Chem. Soc. 2003, 125, 10780. (e) Evans, D. A.; Fandrick, K. R.; Song, H.-J. J. Am. Chem. Soc. 2005, 127, 8942. (f) Jia, Y. X.; Xie, J. H.; Duan, H. F.; Wang, L. X.; Zhou, Q. L. Org. Lett. 2006, 8, 1621. (g) Blay, G.; Fernández, I.; Pedro, J. R.; Vila, C. Org. Lett. 2007, 9, 2601. (h) Liu, Z.; Shi, M. Tetrahedron: Asymmetry 2009, 20, 119. (i) Wang, W.; Liu, X.; Cao, W; Wang, J.; Lin, L.; Feng, X. Chem.—Eur. J. 2010, 16, 1664.


⁽⁵⁾ For selected examples of chiral organocatalysis, see: (a) Austin, J. F.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2002**, *124*, 1172. (b) Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L. *J. Am. Chem. Soc.* **2006**, *128*, 8156. (c) Qian, Y.; Ma, G.; Lv, A.; Zhu, H. L.; Zhao, J.; Rawal, V. H. Chem. Commun. **2010**, *46*, 3004.

SCHEME 1. Synthesis of SPINOL-Derived Phosphoric Acids 2

subsequent iodination, followed by deprotection of hydroxyl groups, to gave 6,6'-diiodo compound **5** in 73% yield. Suzuki coupling reaction of **5** using 5% Pd/C as catalyst resulted in **6a**-**f** in excellent yields (85-97%) with convenient operation. Finally, phosphorylation of **6** afforded the corresponding phosphoric acids **2a**-**f** in high yields (83-92%).

TABLE 1. Optimization for Enantioselective Friedel-Crafts Reaction^a

^{*a*}The reaction was carried out with 0.5 mmol of **7a**, 0.1 mmol of **8a**, and 10 mol % of catalyst **2** in 0.5 mL toluene. ^{*b*}Isolated yield. ^{*c*}Determined by HPLC analysis on a Chiralcel OD-H column.

To test the potential applications of our catalysts, the reaction of indole (7a) with N-tosylimine 8a was chosen as a model reaction, which has been well promoted by chiral metal complex,^{4f,h} chiral thiourea,^{5b} and BINOL-derived phosphoric acid catalysts.^{7b} The products of this asymmetric Friedel-Crafts reaction provide easy access to the synthesis of enantiopure 3-indolyl methanamine derivatives. In our initial investigation, nonsubstituted 2a was used as catalyst with 10 mol % loading, and the product was obtained in 80% yield with 11% ee (entry 1, Table 1), while BINOL phosphoric acid gave only racemic products.7b Inspired by this result, we then tested the substituent effect at the 6,6'-positions of the catalysts with various aryl groups at room temperature and found the substituent effect to be remarkable (Table 1, entries 1-6). The reactions using 2b-d as catalyst proceeded in similar yields and enantioselectivities, except that 2b took a longer reaction time (Table 1, entries 2-4). When catalyst 2e was employed, a quantitative yield as well as a moderate ee value (56%) were obtained within 10 min (Table 1, entry 5).

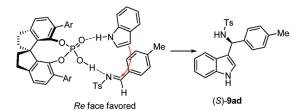
8678 J. Org. Chem. Vol. 75, No. 24, 2010

To our delight, the catalyst **2f**, bearing two 1-naphthyl groups at the 6,6'-positions of the SPINOL backbone, gave high yield (90%) and good enantioselectivity (89% ee) at room temperature. Further improvement of the enantioselectivity was achieved at lower reaction temperature (Table 1, entries 7–9). Up to 96% ee enantioselectivity and 80% yield were obtained when the reaction was performed at -60 °C for 36 h (Table 1, entry 9).

The substrate scope of the enantioselective Friedel-Crafts reaction of indoles 7 with imines 8 was then evaluated and is summarized in Table 2. Interestingly, both the reactivity and the enantioselectivity were enhanced by changing the tosyl group of N-sulfonylphenylimines to the more electron-withdrawing *p*-bromobenzenesulfonyl group (Table 2, entries 1-3). Indoles bearing different substituents were then examined for the reaction with imines 8a or 8c, and the result showed a good tolerance in this catalytic system (Table 2, entries 4-9), although the introduction of an electron-withdrawing group onto the indole ring led to a lower reactivity (Table 2, entries 8 and 9). For any imines 8d-i, the reactions went smoothly to give the corresponding products in 68-93% yield and 91 - >99% ee (Table 2, entries 10-16). In the case of **8i** derived from 1-naphthaldehyde, excellent enantioselectivity (97% ee) was obtained at higher temperature (0 °C) (Table 2, entry 16). In addition, heteroaryl imine 8j also gave excellent yield (96%) and enantioselectivity (97% ee) (Table 2, entry 17). For alkyl imine 8k, however, we obtained the adduct in lower yield (47%) and moderate enantioselectivity (79% ee) (Table 2, entry 18). The Sconfiguration adduct product 9ad was confirmed by the X-ray crystal structure analysis (see Supporting Information).

Recently, Simon and Goodman¹⁰ provided both data and computation models to identify the specific indolyl methamine product for Friedel–Crafts reactions of indole with *N*tosylimines catalyzed by BINOL-phosphoric acids. On the basis of this result, we propose a possible model for the asymmetric induction of our catalytic system as shown in Scheme 2. Phosphoric acid (S)-**2** as a bifunctional catalyst combines two substrates through hydrogen bonding. In this model, indole attacks *N*-tosylimine from the *re* face preferentially, leading to a *S*-configuration adduct.

In conclusion, we have synthesized a new class of chiral phosphoric acids with a spirobiindane backbone, which could efficiently promote the enantioselective Friedel–Crafts reaction of indoles with imines to afford 3-indolyl methanamines. Up


⁽¹⁰⁾ Simón, L.; Goodman, J. M. J. Org. Chem. 2010, 75, 589.

e i neue					A R	3
		N ^S O ^{R³}	10 mol % (S)-;	2f		
	R^{1}		toluene, -60	\rightarrow	$\sqrt{\frac{1}{1}R^2}$	
	7 H	R ² [1] 8	tolucile, ou		N 9	
entry	7 (R ¹)	$8(R^2/R^3)$	time (h)	product	yield (%) ^b	ee (%) ^c
1	7 a (H)	8a (H/Me)	36	9aa	80	96
2	7 a	8b (H/H)	24	9ab	85	96
3	7 a	8c (H/Br)	18	9ac	89	99
4	7b (2-Me)	8a	12	9ba	97	91
5	7b	8c	8	9bc	93	93
6	7 c (5-OMe)	8a	24	9ca	85	97
7	7 c	8c	28	9cc	81	99
8^d	7d (5-Br)	8a	36	9da	85	93
9^d	7 d	8c	24	9de	79	94
10	7d	8d (4-Me/Me)	24	9dd	81	>99
11	7 a	8d	20	9ad	92	>99(S) ^f
12	7 a	8e (3,4-Me ₂ /Me)	40	9ae	77	98
13	7 a	8f (4-OMe/Me)	48	9af	76	97
14	7 a	8g (4-Cl/Me)	60	9ag	68	91
15	7a	8h (3-OMe/Br)	26	9ah	93	97
16 ^e	7a	NTs	12	9ai	85	97
10	7 44	81:	12	741	05	21
17	7a	8j: ONTs	9	9aj	96	97
18	7a	8k:	10	9ak	47	79

TABLE 2. Enantioselective Friedel-Crafts Reaction Catalyzed by 2f^a

^{*a*}Unless otherwise noted, reactions were carried out with 0.5 mmol of 7, 0.1 mmol of 8, and 10 mol % of 2f in 0.5 mL of toluene at -60 °C. ^{*b*}Isolated yield. ^{*c*}Determined by HPLC analysis on a Chiralcel OD-H column. ^{*d*}Reaction at -40 °C. ^{*c*}Reaction at 0 °C. ^{*f*}Absolute configuration determined by X-ray single-crystal analysis.

SCHEME 2. Proposed Reaction Model

to 97% yield and up to 99% ee enantioselectivity were obtained. Further catalytic applications of the SPINOL-derived phosphoric acids in other enantioselective reactions are in progress.

Experimental Section

Synthesis of (*S*)-6,6'-Diiodo-1,1'-spirobiindane-7,7'-diol (5). To a solution of (*S*)-4^{9d} (0.81 g, 2.4 mmol) and TMEDA (0.75 mL, 5 mmol) in Et₂O (15 mL) was added *n*-BuLi (2.5 M in hexane, 2.88 mL, 7.2 mmol) at -78 °C. After being stirred at room temperature for 6 h, the mixture was cooled to -78 °C, and a solution of

iodine (1.83 g, 7.2 mmol) in Et₂O (20 mL) was carefully added. The resulted suspension was warmed to room temperature, stirred overnight, quenched by saturated Na₂SO₃, and stirred for an additional 1 h. The organic layer was separated, and the aqueous layer was extracted by ether. The combined organic layer was washed with brine, dried over Na2SO4, passed through a pad of silica, and concentrated in vacuo, giving the crude (S)-6,6'-diiodo-7,7'-bis(1-methoxymethoxy)-1,1'-spirobiindane as brown solid, which was used without further purification in the next step. The crude (S)-6,6'-diiodo-7,7'bis(1-methoxymethoxy)-1,1'-spirobiindane was dissolved in CHCl₃ (12 mL) and MeOH (18 mL), and conc HCl (12 mL) was added. After being refluxed for 3 h, the mixture was poured into water and extracted by CH₂Cl₂. The organic layer was washed with saturated NaHCO₃, dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1:10) to give the product 5 (0.88 g, 73% yield) as white solid. Mp 149–150 °C; $[\alpha]^{20}{}_{D} = -187.2 (c 1.0, CHCl_3);$ ¹H NMR (400 MHz, CDCl₃) δ 2.18–2.24 (m, 2 H), 2.29–2.37 (m, 2 H), 2.94–3.06 (m, 4 H), 5.11 (s, 2H), 6.65 (d, J = 8.0 Hz, 2 H), 7.52 (d, J = 7.6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 31.1, 37.7, 59.8, 83.2, 119.2, 133.0, 137.7, 146.7, 151.1; ATR-FTIR 3479, 2935, 1571, 1436, 1323, 1290, 1233, 1188, 1061, 1000, 796, 754 cm⁻¹; HRMS (ESI) calcd for $C_{17}H_{13}I_2O_2^-$ ([M – H]⁻): 502.9005. Found: 502.8989.

Typical Synthesis of (S)-6,6'-Diphenyl-1,1'-spirobiindane-7,7'diol (6b). A solution of (S)-5 (151 mg, 0.3 mmol), phenylboronic acid (128 mg, 1.05 mmol), K₂CO₃ (0.145 g, 1.05 mmol), and 5% Pd/C (13 mg; 0.006 mmol) in dioxane/water (1:1, 6 mL) was stirred at 80 °C for 2 h and then diluted with ethyl acetate and 3 N HCl. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1:15) to give the product **6b** (117 mg, 97% yield) as white solid. Mp 203–204 °C; $[\alpha]^{20}_{D} = -281.5$ (c 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 2.34–2.46 (m, 4 H), 3.02–3.15 (m, 4 H), 5.07 (s, 2H), 6.93 (d, J = 7.6 Hz, 2 H), 7.19 (d, J = 7.6Hz, 2 H), 7.30 (t, J = 7.2 Hz, 2 H), 7.39 (t, J = 7.2 Hz, 4 H), 7.47 (d, J = 7.6 Hz, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 31.1, 37.7, 58.4, 117.4, 126.9, 127.2, 128.6, 129.3, 130.5, 132.0, 137.4, 145.2, 149.4; ATR-FTIR 3510, 2943, 1616, 1580, 1499, 1472, 1420, 1253, 1228, 1180, 1074, 998, 814, 753, 698 cm⁻¹; HRMS (ESI) calcd for $C_{29}H_{23}O_2^-$ ([M - H]⁻): 403.1698. Found: 403.1683.

Typical Synthesis of (S)-1,1'-Spirobiindane-7,7'-diyl phosphate (2f). To a solution of (S)-6f (252 mg, 0.5 mmol) in pyridine (3 mL) was added POCl₃ (92 μ L, 1.0 mmol) dropwise at 0 °C, and the resulting mixture was heated to 70 °C and stirred for 3 h. After the mixture cooled to 0 °C, 3 mL of water was carefully added, and the resulting suspension was stirred at 110 °C for an additional 4 h. Dichloromethane was added, and the pyridine was removed by reverse extraction with 4 N HCl. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (dichloromethane/methanol = 1:20 to 1:10) to give the product 2f (257 mg, 91% yield) as a foamy solid. $_{\rm D}^{20} = -362.2 \ (c \ 0.50, \ {\rm CHCl}_3); \ ^{1}{\rm H} \ {\rm NMR} \ (400)$ $Mp > 300 \circ C; [\alpha]^{20}$ MHz, CHCl₃) δ 2.34-2.51 (m, 4H), 2.90-2.97 (m, 2H), 3.19-3.25 (m, 2H), 6.95-7.02 (m, 2H), 7.19-7.25 (m, 6H), 7.36-7.49 (m, 4H), 7.56–7.61 (m, 2H), 7.70–7.81 (m, 4H); ¹³C NMR (100 MHz, CHCl₃) & 30.3, 39.1, 59.9, 120.7, 121.9, 125.2, 125.8, 126.5, 127.8, 129.8, 131.3, 131.7, 132.5, 132.7, 133.4, 137.4, 140.5, 144.4, 145.6; ³¹P NMR (202 MHz, CDCl₃) δ –9.9; ATR-FTIR 3668, 2982, 2902, 1612, 1398, 1249, 1059, 871, 802, 777 cm⁻¹; HRMS (ESI) calcd for $C_{37}H_{26}O_4P^-$ ([M – H]⁻¹): 565.1569. Found: 565.1541.

Typical Procedure for the Enantioselective Friedel-Crafts Reaction. To a mixture of N-sulfonyl imine 8 (0.1 mmol) and catalyst 2f (0.01 mmol) was added toluene (0.5 mL). Then the mixture was stirred for 10 min at room temperature. Indole 7 (0.5 mmol) was subsequently added in one portion at -60 °C. After the reaction was complete, it was quenched by 2 M NaOH and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate/ petroleum ether = 1:3) to give the corresponding product 9. Product 9ac was obtained in 89% yield after chromatography and 99% ee as determined by HPLC [Daicel Chiralcel OD-H, n-hexane/ *i*-propanol = 70:30, 0.8 mL/min, λ = 254 nm, $t_{\rm R}$ (minor) = 15.69 min, $t_{\rm R}$ (major) = 35.37 min]. Mp 135–136 °C; [α]²⁰_D = -88.3 (*c* 0.80, Acetone); ¹H NMR (400 MHz, CDCl₃) δ 5.24 (d, J = 7.2 Hz, 1 H), 5.91 (d, J = 7.2 Hz, 1H), 6.65 (s, 1 H), 7.06 (t, J = 7.6 Hz, 1 H), 7.18–7.22 (m, 6 H), 7.30–7.38 (m, 4 H), 7.42 (d, J = 8.0 Hz, 2 H), 7.99 (br, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 55.2, 111.4, 115.8, 119.3, 120.1, 122.6, 123.8, 125.3, 126.9, 127.2, 127.5, 128.38, 128.44, 131.6, 136.5, 139.4, 139.6; ATR-FTIR 3669, 3411, 2982, 2902, 1399, 1323, 1249, 1157, 1071, 896, 740 cm^{-1} ; HRMS (ESI) calcd for $C_{21}H_{17}BrN_2O_2SNa^+$ (M + Na⁺): 463.0092. Found: 463.0072.

Acknowledgment. We thank the National Natural Science Foundation of China (No. 20872128; J0830413), the Fundamental Research Funds for the Central Universities (2009QNA3011), and the Natural Science Foundation of Zhejiang Province (R407106) for financial support of this research.

Supporting Information Available: Detailed experimental procedures, characterization data, CIF file, and copies of ¹H and ¹³C NMR and HPLC spectra. This material is available free of charge via the Internet at http://pubs.acs.org.